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For over 25 years, Sculptra poly-L-lactic acid—(PLLA-SCA; 
Galderma Sweden) is used in aesthetic dermatology, address-
ing volume loss, skin laxity, and wrinkles effectively [1]. This 
synthetic, bio-compatible product is available as a lyophilized 
powder with PLLA-SCA microparticles, mannitol, and sodium 
carboxymethylcellulose, and is prepared as a suspension using 
sterile water for injection [2].

Biocompatible, polymeric biomaterials like PLLA, when im-
planted, induce a foreign body reaction shaped by the material's 
characteristics, patient specifics, and implantation technique. 
Controlling these factors ensures a predictable host response, 
crucial for achieving desired outcomes in collagen stimulation 
treatments.

While the specific molecular mechanisms of PLLA's stimula-
tion of collagen production are not fully understood, this article 
reviews literature on PLLA-induced biochemical pathways in 
fibroblasts, adipocytes, and macrophages, exploring their inter-
play. Variations among injectable PLLA formulations, particu-
larly in tissue integration and degradation rates, are noteworthy 
[3, 4]. This article differentiates between PLLA-SCA and other 
PLLA formulation.

Fibroblasts, known for their involvement in the assembly and 
maintenance of the extracellular matrix (ECM), have been rec-
ognized as key players in the PLLA mechanism of action. In 
2012 Courderot-Masuyer et al. [5] presented the first evidence 
that the addition of 0.1% PLLA-SCA to the growth medium of 
ex vivo human fibroblasts, derived from female wrinkles, leads 

to an increase in collagen Type I production. Although this ini-
tial study is limited by the sample size of three donors, its find-
ings have been supported by subsequent research.

Goldberg et al. [6] substantiated the idea of PLLA-SCA-induced 
collagen neogenesis in humans. In their clinical study involving 
14 subjects, they demonstrated that the subdermal application 
of PLLA-SCA significantly enhances collagen Type I produc-
tion. Notably, collagen Type I levels increased by 65.5% after 
3 months, with a slight decrease at the 6-month mark, illustrat-
ing a sustained effect.

Kim et al. [7] explored whether PLLA-SCA could trigger colla-
gen synthesis in fibroblasts.

Cultured human fibroblasts (Cell line Hs68) showed a signifi-
cant increase in collagen Type I RNA and procollagen in cell 
extracts, and collagen Type I in the medium after a 48-h expo-
sure to 0.1% PLLA-SCA. Two independent studies substanti-
ated these results. While Huth et al. [8] reported a significant 
thickening of their skin model after PLLA-SCA-application, Zhu 
et al. [9] confirmed that increasing concentrations of PLLA-SCA 
in the growth medium (0.1%, 0.5%, and 1%) resulted in a gradual 
increase in COL1A1 (collagen 1 alpha 1) and COL1A2 mRNA, 
as well as COL1A1 protein in the same human cell line.

These studies also highlighted PLLA-SCA's broader anabolic 
effects on the ECM, evidenced by similar results for elastin—a 
crucial crosslinking protein between collagen fibers—and 
changes in TIMP-1 and -2 (tissue inhibitor of metalloprotease) 
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mRNA levels and a dose-dependent reduction in MMP-1 (matrix 
metalloprotease 1) mRNA levels.

These effects have been linked to the TGF-β (transforming 
growth factor beta) signaling pathway. Increased levels of 
TGF-β1, phosphorylated SMAD-1 and -2 proteins were de-
tected after stimulation with 0.5% PLLA-SCA. These findings 
align with previous research, indicating that TGF-β1 auto- and 
paracrine stimuli regulate various fibroblast functions, includ-
ing proliferation, migration, connective tissue synthesis, and 
wound healing, as documented by Ashcroft, Yao, Lee et  al. 
[10–12]. Huth et al. [13] provided an additional link between 
TGF-β signaling and PLLA-SCA in 3D human skin models.

The current mechanistic observation posits that following the 
administration of the PLLA-SCA suspension, immediate volu-
mization is observed, persisting for several days until the carrier 
solution is fully absorbed, as detailed in Moyle's 2004 research 
[14]. The remaining PLLA-SCA particles incite a subclinical in-
flammatory and foreign body reaction, as described in Junge's 
2012 study [15]. This foreign body reaction entails the recruit-
ment of monocytes and their differentiation into macrophages, 
which coalesce into giant cells, encapsulating the foreign bod-
ies composed of PLLA-SCA as demonstrated by Goldberg et al. 
and later by Mazzuco et  al. [6, 16]. However, alongside the 
multinucleated histiocytes surrounding the PLLA-SCA parti-
cles, Goldberg's team also documented the presence of lympho-
cytes around superficial dermal vessels in some tissue samples. 
This was characterized as a mild inflammatory reaction, even 
6 months post-injection of PLLA-SCA in a significant propor-
tion of patients (10 out of 14). The researchers noted that the 
stimulation of dermal collagen occurred without a notable in-
flammatory response, suggesting a more complex mechanism. 
In 2023, Oh et  al. [17] provided the foundation for an elegant 
hypothesis for the coexistence of leukocytes and the absence of 
an overt inflammatory reaction, attributing it to the polariza-
tion of macrophages. Macrophages are known to exist in two 
subtypes: pro-inflammatory M1 and anti-inflammatory, tissue-
regenerating M2 macrophages [18, 19]. M1 macrophages are 
activated by tissue factors like bacterial lipopolysaccharide and 
interferon gamma and secrete proinflammatory cytokines (e.g., 
IL-1, IL-6, IL-12, and IL-23). In contrast, M2 macrophages, acti-
vated by IL-4 and IL-13, promote anti-inflammatory responses 
and tissue regeneration, secreting factors like TGF-β.

Using murine models, cultured murine macrophages 
(RAW264.7), human fibroblasts (CCD-986sk), and their own 
PLLA formulation, Oh et al. [17] observed an increase in IL-4 
and IL-13 post-PLLA treatment (10 mg/mL), and a shift to-
ward M2 macrophage polarization both in  vivo and in  vitro. 
Although, the compared studies differ in their time points and 
models (Oh: 48 h for cell culture and 28d for mice vs. Goldberg: 
3, 6, and 12 months in humans) one possible conclusion is that 
the leukocytes observed in Goldberg's study were likely M2 po-
larized macrophages, correlating with the absence of inflamma-
tion. Huth et al. could substantiate this result by demonstrating 
CD-163+ (cluster of differentiation-163, a marker for M2 polar-
ization) macrophages in their 3D skin models after stimulation 
with PLLA-SCA [13]. Furthermore, Oh et  al. [17] replicated 
previous findings, demonstrating an upregulation of TGF-β, 
COL1A1, TIMP1, and SMAD2 phosphorylation, alongside a 

downregulation of MMP2 and MMP3 in cultured fibroblasts 
and skin biopsies. They also observed PLLA-induced phos-
phorylation of AKT in senescent fibroblasts and aged mouse 
skin, echoing the results of Kim et al. with PLLA-SCA [7]. As 
a side note, already activated M2 polarized human macrophage 
cultures display an increase of two pro-inflammatory factors 
(MIP1a and 1b) as a result of incubation with PLLA-SCA for 24 h 
[20]. As no other inflammation markers were significantly reg-
ulated, this finding likely reflects a short-term stress response.

Finally, adipocytes, although less understood, also play a role 
in the context of PLLA-based treatments. Focusing on PLLA 
scaffolds for post-mastectomy aesthetic treatments Ogino et  al. 
[21–23] have shown a consistent increase in fat mass across dif-
ferent animal models including rats, rabbits, and pigs. They ob-
served increased adipocyte levels at 12 and 24 months in rabbits 
with PLLA porous capsule implants under inguinal fat, without 
added growth factors and no growth after 12 months [22]. After 
12- and 24-month macrophage invasion was observed in the cap-
sule implants. Using a collagen sponge surrounded by a PLLA-
mesh, the authors reported a very low number of macrophages 
while demonstrating even stronger effects than with the capsule 
implant alone. In a porcine model, similar results were achieved: 
decreased implant size and increased adipose tissue, especially 
between 6 and 9 months, then reducing after 12 months [23]. The 
tissue contained adipocytes, collagen fibers, and notably, capillary 
formation around PLLA threads at 12 months, suggesting PLLA's 
direct role in this process. Recently Jin et al. described the PLLA 
induced browning of primary murine fibroblast, but no adipogenic 
differentiation was observed in mesenchymal stem cells after 
PLLA stimulation [24]. The authors showed that PLLA increases 
lactate levels in the culture medium and its uptake via the lactate 
transporter Mct1/4 is responsible for the browning. Contradictory 
to this study, Kim et al. demonstrated an effect of injectable PLLA-
SCA on adipogenesis using murine pre-adipocytes (3T3-L1 cells) 
post UVB-irradiation, simulating deep skin photoaging [25]. They 
observed significant adipogenesis by Day 7 post-differentiation, 
with PLLA-SCA enhancing collagen Types IV and VIɑ1 produc-
tion, even without UVB damage. This is especially interesting as 
collagen Type VIɑ1 has been shown to promote adipogenesis [26] 
(as well as collagen Type I [27] which is produced by fibroblasts 
upon PLLA-SCA-stimulation). The differences in the studies are 
likely due to the chosen in vitro models.

In summary, recent studies have advanced our understanding 
of PLLA's biological effects. Goldberg et al. showed that PLLA-
SCA particles are encapsulated by multinucleated giant cells, 
and that the presence of PLLA-SCA leads fibroblasts to secrete 
TGF-β, triggering their own activation and proliferation, thus 
promoting new ECM formation.

Macrophages play a vital role, likely undergoing M2 polariza-
tion with PLLA-SCA, reducing inflammation, and releasing 
auto- and paracrine signals like IL-4 and IL-13. This stimulates 
fibroblast activity via TGF-β. Additionally, PLLA triggers adi-
pogenesis, which may explain the volume increase in treated 
areas [28]. PLLA-SCA prompts collagen VI production in pre-
adipocytes differentiation and Collagen I in fibroblasts, creating 
a feedback loop for adipogenesis regulation. Finally, there are 
hints of TGF-β signaling positively affecting adipocyte differen-
tiation [29] Figure 1.
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Despite progress, key questions persist. The precise mechanism 
of cell recognition of PLLA remains unclear. Further research is 
needed on PLLA's effects on adipogenesis and on the immuno-
logical responses over time and tissue, its direct effect on angio-
genesis, and the interaction between multinucleated histiocytes 
around PLLA particles and other ECM cells.
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